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Number Theory

Definitions & Theorems

Bounds

• Def 4.3.1 [Lower Bound]: S ⊆ Z, b ∈ Z
b is a lower bound for S ⇐⇒ ∀x ∈ S, b ≤ x
b is an upper bound for S ⇐⇒ ∀x ∈ S, b ≥ x

• Thm 4.3.2 [Well Ordering Principle]: S ⊆ Z
S is non-empty and S has a lower bound
=⇒ S has a least element
S is non-empty and S has an upper bound
=⇒ S has a greatest element

• Prop 4.3.3 [Uniqueness of least element]:
S ⊆ Z
S has a least element =⇒ the least element is
unique

• Prop 4.3.4 [Uniqueness of greatest element]:
S ⊆ Z
S has a greatest element =⇒ the greatest element
is unique

Parity

• Def 1.6.1 [Even and Odd]: n ∈ Z
n is even ⇐⇒ ∃k ∈ Z such that n = 2k

n is odd ⇐⇒ ∃k ∈ Z such that n = 2k + 1

• Prop 4.6.4 (Epp) [Square number]: n ∈ Z
n2 is even =⇒ n is even

Divisibility & Primality

• Def 1.3.1 [Divisibility]: n, d ∈ Z
d | n ⇐⇒ ∃k ∈ Z such that n = dk

• Thm 4.3.1 (Epp): a, b ∈ Z+

a | b =⇒ a ≤ b

• Thm 4.3.3 (Epp) [Transitivity]: a, b, c ∈ Z
a | b and b | c =⇒ a | c

• Thm 4.1.1 [Linear combination]: a, b, c ∈ Z
a | b and a | c =⇒ ∀x, y ∈ Z, a | (bx + cy)

• Def 4.2.1 [Prime number]: n ∈ Z
n is prime ⇐⇒ n > 1 and ∀r, s ∈ Z+, (n = rs =⇒
r = n or s = n)
n is composite ⇐⇒ ∃r, s ∈ Z+, such that n =
rs and 1 < r < n and 1 < s < n

• Prop 4.2.2: p, p′ is prime
p | p′ =⇒ p = p′

• Prop 4.7.3 (Epp): p is prime, a ∈ Z
p | a =⇒ p - (a + 1)

• Thm 4.7.4 (Epp): The set of primes is infinite

• Thm 4.2.3: p is prime, xi ∈ Z
p | x1x2 . . . xn =⇒ p | xi for some i

• Thm 4.3.5 (Epp) [Unique Prime Factorization
/ Fundamental Theorem of Arithmetic]:
1 < n ∈ Z

n =

k∏
i=1

peii uniquely, for some k > 1, ordered primes

pi, and ei ∈ Z+

• Thm 4.4.1 [Quotient-Remainder Theorem]:
a ∈ Z, b ∈ Z+

∃!q, r ∈ Z such that a = bq + r and 0 ≤ r < b

• Def 4.5.1 [Greatest Common Divisor (GCD)]:
a, b ∈ Z, not both zero, then gcd(a, b) = d where:
(1) d | a and d | b
(2) ∀c ∈ Z, c | a and c | b =⇒ c ≤ d

• Prop 4.5.2 [Existence, uniqueness of GCD]:
a, b ∈ Z, not both zero, then gcd(a, b) exists and is
unique

• Thm 4.5.3 [Bézout’s Identity]:
a, b ∈ Z, not both zero, and d = gcd(a, b)
∃x, y ∈ Z such that ax + by = d

• Def 4.5.4 [Relatively Prime]: a, b ∈ Z
a and b are relatively prime ⇐⇒ gcd(a, b) = 1

• Prop 4.5.5: a, b ∈ Z, not both zero
c | a and c | b =⇒ c | gcd(a, b)

• Prop * Num. Th. P2: a, b ∈ Z+

a | b ⇐⇒ gcd(a, b) = a

• Prop * Num. Th. P2: a, b ∈ Z, not both zero,
d = gcd(a, b)
a

d
and

b

d
are relatively prime

• Prop * Num. Th. P2: a, b ∈ Z+

gcd(a, b) | lcm(a, b)

• Def 4.6.1 [Least Common Multiple (LCM)]:
a, b ∈ Z \ {0}, then lcm(a, b) = m ∈ Z+ where:
(1) a | m and b | m
(2) ∀c ∈ Z+, a | c and b | c =⇒ m ≤ c

Modular Congruence

• Def 4.7.1 [Congruence modulo]: m,n ∈ Z,
d ∈ Z+

m ≡ n (mod d) ⇐⇒ d | (m− n)

• Def 8.4.1 (Epp) [Modular equivalences]:
a, b ∈ Z, 1 < n ∈ Z+, then these are equivalent:
(1) n | (a− b)
(2) a ≡ b (mod n)
(3) ∃k ∈ Z such that a = b + kn
(4) a mod n = b mod n

• Thm 8.4.3 (Epp) [Modulo Arithmetic]:
a, b, c, d ∈ Z, 1 < n ∈ Z+

If a ≡ c (mod n) and b ≡ d (mod n), then these are
true:
(1) (a + b) ≡ (c + d) (mod n)
(2) (a− b) ≡ (c− d) (mod n)
(3) ab ≡ cd (mod n)
(4) am ≡ cm (mod n),∀m ∈ Z+

• Cor 8.4.4 (Epp): a, b ∈ Z, 1 < n ∈ Z+

(1) ab ≡ [(a mod n) (b mod n)] (mod n)
(2) ab mod n = [(a mod n) (b mod n)] mod n
(3) am ≡ (a mod n)

m
(mod n),∀m ∈ Z+

• Def 4.7.2 [Multiplicative inverse modulo n]:
a ∈ Z, 1 < n ∈ Z+

s = a−1 is a multiplicative inverse of a modulo n
⇐⇒ as ≡ 1 (mod n)
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• Thm 4.7.3 [Existence of multiplicative
inverse]: a ∈ Z, 1 < n ∈ Z+

a−1 exists ⇐⇒ a and b are relatively prime

• Col 4.7.4 [Multiplicative inverses for primes]:
a ∈ Z, p is prime
∀a ∈ Z in range 0 < a < p, a−1 exists

• Thm 8.4.9 (Epp) [Cancellation Law]:
a, b, c ∈ Z, 1 < n ∈ Z+, a and n are relatively prime
ab ≡ ac (mod n) =⇒ b ≡ c (mod n)

• Thm 8.4.10 (Epp) [Fermat’s Little Theorem]:
If p is prime, a ∈ Z, p - a, then ap−1 ≡ 1 (mod p)

Real Numbers — Appendix A (Epp)
All entities are real numbers in this section

• T11 [Zero Product Property]:
ab = 0 =⇒ a = 0 or b = 0

• T17 [Trichotomy Law]:
Exactly one of these three statements are true:
(1) a < b (2) b < a (3) a = b

• T18 [Transitive Law]: a < b and b < c =⇒ a < c

• T19: a < b =⇒ a + c < b + c

• T20: a < b and c > 0 =⇒ ac < bc

• T21: a 6= 0 =⇒ a2 > 0

• T23: a < b and c < 0 =⇒ ac > bc

• T24: a < b =⇒ −a > −b (∴ a < 0 =⇒ −a > 0)

• T25:
ab > 0 =⇒ (a > 0 and b > 0) or (a < 0 and b < 0)

• T26: a < c and b < d =⇒ a + b < c + d

• T27: 0 < a < c and 0 < b < d =⇒ 0 < ab < cd

Rational Numbers

• Thm 4.6.3 (Epp): The sum of any rational
number and any irrational number is irrational

• Thm 4.7.1 (Epp):
√

2 is irrational

Useful Information & Presentation

• Smallest primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199

• Euclid’s algorithm: Calculate gcd (1320, 714):

gcd(1320, 714) (1)

1320 = 714× 1 + 606 ←− gcd(714, 606) (2)

714 = 606× 1 + 108 ←− gcd(606, 108) (3)

606 = 108× 5 + 66 ←− gcd(108, 66) (4)

108 = 66× 1 + 42 ←− gcd(66, 42) (5)

66 = 42× 1 + 24 ←− gcd(42, 24) (6)

42 = 24× 1 + 18 ←− gcd(24, 18) (7)

24 = 18× 1 + 6 ←− gcd(18, 6) (8)

18 = 6× 3 + 0 ←− gcd(6, 0) (9)

Solve gcd(1320, 714) = 1320x + 714y:

6 = 24 + 18(−1) from line (8)

= 24 + (42− 24)(−1) from line (7)

= 42(−1) + 24(2)

= 42(−1) + (66− 24)(2) from line (6)

= 66(2) + 42(−3)

= 66(2) + (180− 66)(−3) from line (5)

= 180(−3) + 66(5)

= 180(−3) + (606− 108× 5)(5) from line (4)

= 606(5) + 108(−28)

= 606(5) + (714− 606)(−28) from line (3)

= 714(−28) + 606(33)

= 714(−28) + (1320− 714)(33) from line (2)

= 1320(33) + 714(−61)

∴ x = 33 and y = −61 is a valid solution

(x, y) =

(
33 +

714k

6
,−61 +

1320k

6

)
is a valid

solution for any k ∈ Z

• Mathematical induction:
1. Let P(n) = (n has a prime factorization), for any
integer n > 1.
2. Base case: n = 2:
2.1. Since 2 is prime, 2 = 2 is a trivial prime
factorization.
2.2. Thus P(2) is true.
3. Inductive step: For any integer k > 1:
3.1. Assume P(i) is true for 1 < i ≤ k. (Note: for
regular induction, assuming P (k) is true is
sufficient.)
3.2. That is, all integers i in the range 1 < i ≤ k
have prime factorizations.
3.2.1. Consider the integer k+1:
3.2.*. ...
4. Therefore, by strong induction, the statement is
true.

Logic

Useful Information & Presentation

• Verifying argument validity
Sandra knows Java and Sandra knows C++.
∴ Sandra knows C++.

1. Let p = (Sandra knows Java).
2. Let q = (Sandra knows C++).
3. p ∧ q. (Premise)
4. ∴ q. (Valid by specialization)

If at least one of these two numbers is divisible by 6,
then the product of these two numbers is divisible
by 6.
Neither of these two numbers is divisible by 6.
∴ The product of these two numbers is not divisible
by 6.

1. Let p = (At least one number is divisible
by 6).

2. Let q = (Their product is divisible by 6).
3. p→ q. (Premise)
4. ∼p. (Premise)
5. // ∴ ∼q. (Invalid; inverse error)
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Counting & Probability

• Thm 9.1.1 [Num. of elements in list]:
For any m,n ∈ Z s.t. m ≤ n, there are n−m + 1
integers from m to n inclusive

• Thm 9.2.1 [Multiplication rule]:

Total num. of ways =
∏

(num. ways of each step)

• Thm 9.2.2 [Permutation]: Num. of permutations
of a set with n elements (n ≥ 1) is n!

• Thm 9.2.3 [P(n, r)]: Num. of r -permutations
from a set with n elements (1 ≤ r ≤ n) is

n(n− 1)(n− 2) · · · (n− r + 1) ≡ n!

(n− r)!

• Thm 9.3.1 [Addition rule]:
If A is the union of distinct mutually disjoint subsets

Ai, then N(A) =
∑

N(Ai)

• Thm 9.3.2 [Difference rule]: If B is a subset of
A, then N(A−B) = N(A)−N(B)

• Thm 9.3.3 [Principle of inclusion & exclusion
for 2 or 3 sets]

• Thm 9.4.1 [Pigeonhole principle]:
A function from one finite set to a smaller finite set
cannot be injective

• Generalized pigeonhole principle:
For any function from a finite set X to a finite set Y
and for any k ∈ Z+:

k < |X|
|Y | =⇒ there is some y ∈ Y s.t. y is the image

of at least k + 1 distinct elements

• Generalized pigeonhole principle
(contrapositive form):
For any function from a finite set X to a finite set Y
and for any k ∈ Z+:
For every y ∈ Y , f−1(y) has at most k elements
=⇒ |X| ≤ k|Y |

• Thm 9.4.2 [Bijectivity of same-sized sets]:
If X and Y are finite sets of the same size, and
f : X → Y then:
f is injective ⇐⇒ f is surjective

• Thm 9.5.1 [

(
n
r

)
]: Num. of r -combinations from a

set with n elements is
P(n, r)

r!
=

n!

r!(n− r)!

• Thm 9.5.2 [Permutations of sets of

indistinguishable objects]:
n!

n1!n2! · · ·nk!

• Thm 9.6.1 [r-combinations with repetition
allowed]: Num. of r -combinations with repetition
allowed (multisets of size r) that can be selected

from a set of n elements is

(
r + n− 1

r

)

• Thm 9.7.1 [Pascal’s formula]:(
n + 1
r

)
=

(
n

r − 1

)
+

(
n
r

)

• Thm 9.7.1 [Binomial theorem]:

(a + b)
n

=

n∑
k=0

(
n
k

)
an−kbk

• Conditional probability: P (B|A) =
P (A ∩B)

P (A)
P (B|A) · P (A) = P (A ∩B) = P (A|B) · P (B)

• Thm 9.9.1 [Bayes’ theorem]: If the sample space
S is a union of mutually disjoint events B1, . . . , Bn

and 1 ≤ k ≤ n, then:

P (Bk|A) =
P (A|Bk) · P (Bk)

P (A|B1)·P (B1) +· · ·+ P (A|Bn)·P (Bn)

• Independent events: A and B are independent
⇐⇒ P (A ∩B) = P (A) · P (B)

• Pairwise/mutually independent:
Pairwise independent:
Any two different events are independent
Mutually independent:

For any subset T of events, P
(⋂

T
)

=
∏
A∈T

P (A)

(when n > 2, pairwise indep. 6=⇒ mutually indep.)

Graphs & Trees

Basic Graph Theory

• Basic definitions:
Simple graph: no loops or parallel edges
Complete graph: simple graph with one edge per
pair of distinct edges
Total degree of graph: sum of degrees of all vertices

• Thm 10.1.1 [Handshake theorem]: For any
graph G, total degree of G = num. of edges in G

• Col 10.1.2: Total degree of a graph is even

• Prop 10.1.3: There are even num. of vertices with
odd degree

• More definitions:
Walk from v to w: finite alternating sequence of
adjacent vertices and edges, i.e.
v0e1v1e2 . . . vn−1envn where v0 = v and vn = w
Trail from v to w: walk without repeated edge
Path from v to w: walk without repeated vertex
Trivial walk from v to v: walk with single vertex v

walk ⊇ trail ⊇ path ⊇ trivial walk

Closed walk: start and end at same vertex
Circuit (or cycle): non-trivial closed walk without
repeated edge
Simple circuit (or simple cycle): circuit with no
repeated vertex apart from start/end

closed walk ⊇ circuit ⊇ simple circuit

Connected vertices: there is a walk from v to w
Connected graph: all pairs of vertices are connected
Connected component: connected subgraph of G
that is not a subgraph of any other connected
subgraph of G

• Lemma 10.2.1 [Circuit edge removal]:
For any graph G:
(1) G is connected =⇒ there is a path between any
two distinct vertices in G
(2) If v and w are part of a circuit and one edge
from the circuit is removed, then there still exists a
trail from v to w
(3) G is connected and contains a circuit =⇒ any
edge of the circuit can be remove without
disconnecting G
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Euler Circuits

• Euler circuit definitions:
Euler circuit: circuit that uses every edge exactly
once and uses every vertex at least once
Eulerean graph: graph with a Euler circuit
Euler trail: trail between distinct start and end
vertices that uses every edge exactly once and
uses every vertex at least once

• Thm 10.2.2:
G has Euler circuit =⇒ every vertex of G has
positive even degree

• Thm 10.2.4 [Existence of Euler circuit]:
G has Euler circuit ⇐⇒ G is connected and every
vertex of G has positive even degree

• Col 10.2.5 [Existence of Euler trail]:
G has Euler trail from v to w ⇐⇒ G is connected,
v and w have (positive) odd degree, all other
vertices of G have positive even degree

Hamiltonian Circuits

• Hamiltonian circuit definitions:
Hamiltonian circuit: simple circuit that uses every
vertex exactly once
(Hamiltonian circuits with the same path but
different start/end are the same circuit)
Hamiltonian graph: graph with a Hamiltonian
circuit

• Prop 10.2.6 [Hamiltonian circuit properties]:
If G has a Hamiltonian circuit, then there exists a
subgraph H such that:
(1) H contains every vertex of G
(2) H is connected
(3) H has the same number of edges as vertices
(4) Every vertex of H has degree 2
(The contrapositive form may be used to show G
does not have a Hamiltonian circuit)

Adjacency Matrices

• Basic usage: aij = i th row, j th column
Directed graph: aij = num. of edges from vi to vj
Undirected graph: Symmetric adjacency matrix

• Thm 10.3.1 [Block diagonal = connected
components]: G is made up of connected
components G1, . . . , Gk =⇒ A = diag[A1, . . . , Ak]

• Thm 10.3.2 [Walks of length n]: ij th entry of
An = num. of walks of length n from vi to vj

Isomorphisms

• Isomorphic graph: G is isomorphic to G′ ⇐⇒
exists bijections g : V (G)→ V (G′) and
h : E(G)→ E(G′) preserving edge-endpoint
functions of G and G′,
i.e. ∀v ∈ V (G), e ∈ E(G), (v is an endpoint of e
⇐⇒ g(v) is an endpoint of h(e))

• Thm 10.4.1 [Equivalence relation]:
Graph isomorphism is an equivalence relation

• Thm 10.4.2 [Invariants for isomorphism]:
(1) has n vertices
(2) has m edges
(3) has a vertex of degree k
(4) has m vertices of degree k
(5) has a circuit of length k
(6) has a simple circuit of length k
(7) has m simple circuits of length k
(8) is connected
(9) has an Euler circuit
(10) has a Hamiltonian circuit

• Simple isomorphic graph: For simple G and G′:
G is isomorphic to G′ ⇐⇒ exists bijection
g : V (G)→ V (G′) preserving edge-endpoint
functions of G and G′,
i.e. ∀u, v ∈ V (G), ({u, v} is an edge in G ⇐⇒
{g(u), g(v)} is an edge in G′)

Trees

• Basic definitions:
Circuit-free: graph with no circuits
Tree: graph that is circuit-free and connected
Trivial tree: graph with only one vertex
Forest: graph that is circuit-free and not connected

• Leaf / terminal vertex definition:
If T has only 1 or 2 vertices, then all vertices are
leaves (leaf of trivial tree has degree 0)
If T has at least 3 vertices then:
— degree 1 = leaf
— degree greater than 1 = internal vertex
(In a rooted tree, a root with only one child is also a
leaf)

• Lemma 10.5.1: Any non-trivial tree has at least
one vertex of degree 1

• Thm 10.5.2 [n–1 edges]:
Any tree with n vertices (n ≥ 0) has n− 1 edges

• Lemma 10.5.3 [Circuit edge removal]:
If G is connected and C is any circuit in G, removing
any edge of C from G will not disconnect the graph

• Thm 10.5.4 [Tree condition]:
G is a connected graph with n vertices and n− 1
edges =⇒ G is a tree

Rooted Trees

• Basic definitions:
Level of a vertex: num. of edges along the (unique)
path between it and the root
Height: max. vertex level
Full binary tree: each parent has exactly two
children

• Thm 10.6.1 [Full binary tree theorem]:
T is a full binary tree with k internal vertices =⇒
T has a total of 2k + 1 vertices and k + 1 leaves

• Thm 10.6.2 [Max. leaves given tree height]:
T is a binary tree with height h and t leaves =⇒
t ≤ 2h (equiv. log2 t ≤ h)
(Root with ≤1 child is also a leaf)
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Spanning Trees

• Basic definition:
Spanning tree of a graph: subgraph that contains
every vertex of G and is a tree
Minimum spanning tree: spanning tree with least
possible total weight

• Prop 10.7.1:
(1) Every connected graph has a spanning tree
(2) Any two spanning trees for a graph have the
same num. of edges

Useful Sequences

Prime Numbers

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 · · ·

Fibonacci Numbers

1 1 2 3 5 8 13 21 34 55
89 144 233 377 610 987 1597 2584 4181 · · ·

Triangular Numbers

1 3 6 10 15 21 28 36 45 55
66 78 91 105 120 136 153 171 190 210
231 253 276 300 325 351 378 406 435 465
496 528 561 595 630 666 703 741 780 · · ·

Square Numbers

1 4 9 16 25 36 49 64 81 100
121 144 169 196 225 256 289 324 361 400
441 484 529 576 625 676 729 784 841 900
961 1024 1089 1156 1225 1296 1369 1444 1521 · · ·
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